metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jonathan D. Crane

Department of Chemistry, University of Hull, Cottingham Road, Kingston-upon-Hull HU6 7RX, England

Correspondence e-mail: j.d.crane@hull.ac.uk

Key indicators

Single-crystal X-ray study T = 150 KMean σ (C–C) = 0.003 Å R factor = 0.041 wR factor = 0.108 Data-to-parameter ratio = 25.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

$(\eta^5$ -Cyclopentadienyl) $(\eta^6$ -1,2-dichlorobenzene)iron(II) hexafluorophosphate

At 150 K, the iron(II) sandwich complex cation of the salt $[Fe(\eta^5-C_5H_5)(\eta^6-C_6H_4Cl_2)]PF_6$ has almost parallel rings and the two C-Cl bonds of the 1,2-dichlorobenzene ligand are bent slightly towards the iron centre.

Comment

The title compound, (I), is a well known organometallic synthon (Piorko & Sutherland, 1997) and has previously only been structurally characterized in a series of host-guest complexes (Holman *et al.*, 1997).

The C atoms of each of the two aromatic ligands are nearly perfectly coplanar and the two least-squares planes are almost parallel; the angle between the normals to these is $178.68 (9)^{\circ}$. The Fe atom lies 1.6686 (3) Å from the least-squares plane of the cyclopentadienyl ligand, with an average Fe1–C distance of 2.053 (4) Å, and 1.5304 (3) Å from the least-squares plane of the 1,2-dichlorobenzene ligand, with an average Fe1–C distance of 2.079 (3) Å. The two C–Cl bonds are distorted slightly towards the iron centre, lying respectively 0.0297 (6) and 0.0572 (6) Å out of the least-squares plane of the benzene ring.

Experimental

The title compound was prepared according to the method of Piorko & Sutherland (1997). Suitable crystals were grown from ethanol/dichloromethane by slow evaporation.

Crystal data $[Fe(C_5H_5)(C_6H_4Cl_2)]PF_6$ $D_{\rm r} = 2.006 {\rm Mg} {\rm m}^{-3}$ $M_r = 412.90$ Mo $K\alpha$ radiation Monoclinic, $P2_1/c$ Cell parameters from 21436 a = 7.8972 (6) Å reflections b = 12.4909(7) Å $\theta = 2.2 - 32.3^{\circ}$ $\mu=1.67~\mathrm{mm}^{-1}$ c = 13.8701 (11) Å $\beta = 92.325 \ (6)^{\circ}$ T = 150 (2) K $V = 1367.06 (17) \text{ Å}^3$ Fragment, orange $0.45 \times 0.30 \times 0.25 \text{ mm}$ Z = 4

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

m1004 Jonathan D. Crane • $[Fe(C_5H_5)(C_6H_4Cl_2)]PF_6$ DOI: 10.1107/S1600536803022116 Acta Cryst.

Received 1 October 2003 Accepted 6 October 2003 Online 15 October 2003

Figure 1

View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size.

Data collection

Stoe IPDS-II diffractometer3448 reflections with $I > 2\sigma(I)$ Area-detector scans $R_{int} = 0.031$ Absorption correction: numerical $\theta_{max} = 32.3^{\circ}$ (X-SHAPE; Stoe & Cie, 2001) $h = -11 \rightarrow 11$ $T_{min} = 0.594, T_{max} = 0.834$ $k = -18 \rightarrow 17$ 25 607 measured reflections $l = -20 \rightarrow 17$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0678P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.041$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.109$	$(\Delta/\sigma)_{\rm max} = 0.001$
S = 1.03	$\Delta \rho_{\rm max} = 0.64 \ {\rm e} \ {\rm \AA}^{-3}$
4814 reflections	$\Delta \rho_{\rm min} = -0.63 \ {\rm e} \ {\rm \AA}^{-3}$
191 parameters	Extinction correction: SHELXL97
H-atom parameters constrained	Extinction coefficient: 0.0084 (10)

Table 1

Selected geometric parameters (Å, °).

Fe1-C7	2.042 (3)	Cl2-C2	1.723 (2)
Fe1-C11	2.047 (2)	C1-C2	1.411 (3)
Fe1-C8	2.048 (2)	C1-C6	1.413 (3)
Fe1-C10	2.062 (2)	C6-C5	1.405 (3)
Fe1-C9	2.066 (2)	C4-C5	1.405 (4)
Fe1-C3	2.070 (2)	C4-C3	1.408 (3)
Fe1-C2	2.075 (2)	C3-C2	1.399 (3)
Fe1-C6	2.078 (2)	C9-C8	1.391 (4)
Fe1-C5	2.078 (2)	C9-C10	1.420 (3)
Fe1-C4	2.084 (2)	C10-C11	1.412 (4)
Fe1-C1	2.088 (2)	C7-C11	1.402 (4)
Cl1-C1	1.718 (2)	C7-C8	1.404 (4)
C2-C1-Cl1	121.20 (16)	C3-C2-Cl2	119.12 (16)
C6-C1-Cl1	119.27 (16)	C1-C2-Cl2	120.31 (17)

Figure 2 The molecular packing of (I), viewed normal to (100).

All H atoms were initially located in a difference Fourier map, then placed in geometrically idealized positions with C-H distances of 0.95 Å and $U_{iso}(H)$ values set at $1.2U_{eq}(C)$.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2001); program(s) used to solve structure: X-STEP32 (Stoe & Cie, 2001) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: WinGX (Farrugia, 1999) and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX.

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Holman, K. T., Steed, J. W. & Atwood, J. L. (1997). Angew. Chem. Int. Ed. Engl. 36, 1736–1738.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Piorko, A. & Sutherland, R. G. (1997). Synthetic Methods of Organometallic and Inorganic Chemistry, edited by W. A. Herrmann, Vol. 8, pp. 21–22. New York: Georg Thieme Verlag.

Stoe & Cie (2001). X-AREA, X-SHAPE, X-STEP32 and X-RED. Stoe & Cie, Darmstadt, Germany.