Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jonathan D. Crane

Department of Chemistry, University of Hull, Cottingham Road, Kingston-upon-Hull HU6 7RX, England

Correspondence e-mail: j.d.crane@hull.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.041$
$w R$ factor $=0.108$
Data-to-parameter ratio $=25.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

($\boldsymbol{\eta}^{5}$-Cyclopentadienyl) ($\boldsymbol{\eta}^{6}$-1,2-dichlorobenzene)iron(II) hexafluorophosphate

At 150 K , the iron(II) sandwich complex cation of the salt $\left[\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}\right)\right] \mathrm{PF}_{6}$ has almost parallel rings and the two $\mathrm{C}-\mathrm{Cl}$ bonds of the 1,2-dichlorobenzene ligand are bent slightly towards the iron centre.

Comment

The title compound, (I), is a well known organometallic synthon (Piorko \& Sutherland, 1997) and has previously only been structurally characterized in a series of host-guest complexes (Holman et al., 1997).

(I)

The C atoms of each of the two aromatic ligands are nearly perfectly coplanar and the two least-squares planes are almost parallel; the angle between the normals to these is 178.68 (9) ${ }^{\circ}$. The Fe atom lies 1.6686 (3) \AA from the least-squares plane of the cyclopentadienyl ligand, with an average $\mathrm{Fe} 1-\mathrm{C}$ distance of 2.053 (4) \AA, and 1.5304 (3) \AA from the least-squares plane of the 1,2-dichlorobenzene ligand, with an average $\mathrm{Fe} 1-\mathrm{C}$ distance of 2.079 (3) \AA. The two $\mathrm{C}-\mathrm{Cl}$ bonds are distorted slightly towards the iron centre, lying respectively 0.0297 (6) and 0.0572 (6) \AA out of the least-squares plane of the benzene ring.

Experimental

The title compound was prepared according to the method of Piorko \& Sutherland (1997). Suitable crystals were grown from ethanol/dichloromethane by slow evaporation.

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}\right)\right] \mathrm{PF}_{6}$	$D_{x}=2.006 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=412.90$	
Monoclinic, P_{1} / c	Mo $\mathrm{K} \mathrm{\alpha} \alpha$ radiation
$a=7.8972(6) \AA$	Cell parameters from 21436
$b=12.4909(7) \AA$	reflections
$c=13.8701(111 \AA$	$\theta=2.2-32.3^{\circ}$
$\beta=92.325(6)^{\circ}$	$\mu=1.67 \mathrm{~mm}^{\circ}$
$V=1367.06(17) \AA^{3}$	$T=150(2) \mathrm{K}$
$Z=4$	Fragment, orange
	$0.45 \times 0.30 \times 0.25 \mathrm{~mm}$

Received 1 October 2003
Accepted 6 October 2003
Online 15 October 2003

Figure 1
View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size.

Data collection

Stoe IPDS-II diffractometer
Area-detector scans
Absorption correction: numerical
(X-SHAPE; Stoe \& Cie, 2001)
$T_{\text {min }}=0.594, T_{\text {max }}=0.834$
25607 measured reflections
4814 independent reflections

3448 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=32.3^{\circ}$
$h=-11 \rightarrow 11$
$k=-18 \rightarrow 17$
$l=-20 \rightarrow 17$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.109$
$S=1.03$
4814 reflections
191 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0678 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.64 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.63$ e \AA^{-3}
Extinction correction: SHELXL97
Extinction coefficient: 0.0084 (10)

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{Fe} 1-\mathrm{C} 7$	$2.042(3)$	$\mathrm{Cl} 2-\mathrm{C} 2$	$1.723(2)$
$\mathrm{Fe} 1-\mathrm{C} 11$	$2.047(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.411(3)$
$\mathrm{Fe} 1-\mathrm{C} 8$	$2.048(2)$	$\mathrm{C} 1-\mathrm{C} 6$	$1.413(3)$
$\mathrm{Fe} 1-\mathrm{C} 10$	$2.062(2)$	$\mathrm{C} 6-\mathrm{C} 5$	$1.405(3)$
$\mathrm{Fe} 1-\mathrm{C} 9$	$2.066(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.405(4)$
$\mathrm{Fe} 1-\mathrm{C} 3$	$2.070(2)$	$\mathrm{C} 4-\mathrm{C} 3$	$1.408(3)$
$\mathrm{Fe} 1-\mathrm{C} 2$	$2.075(2)$	$\mathrm{C} 3-\mathrm{C} 2$	$1.399(3)$
$\mathrm{Fe} 1-\mathrm{C} 6$	$2.078(2)$	$\mathrm{C} 9-\mathrm{C} 8$	$1.391(4)$
$\mathrm{Fe} 1-\mathrm{C} 5$	$2.078(2)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.420(3)$
$\mathrm{Fe} 1-\mathrm{C} 4$	$2.084(2)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.412(4)$
$\mathrm{Fe} 1-\mathrm{C} 1$	$2.088(2)$	$\mathrm{C} 7-\mathrm{C} 11$	$1.402(4)$
$\mathrm{Cl} 1-\mathrm{C} 1$	$1.718(2)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.404(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Cl} 1$	$121.20(16)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Cl} 2$	$119.12(16)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{Cl} 1$	$119.27(16)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Cl} 2$	$120.31(17)$

Figure 2
The molecular packing of (I), viewed normal to (100).

All H atoms were initially located in a difference Fourier map, then placed in geometrically idealized positions with $\mathrm{C}-\mathrm{H}$ distances of $0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})$ values set at $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: $X-A R E A$ (Stoe \& Cie, 2001); cell refinement: $X-A R E A$; data reduction: $X-R E D$ (Stoe \& Cie, 2001); program(s) used to solve structure: X-STEP32 (Stoe \& Cie, 2001) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: WinGX (Farrugia, 1999) and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX.

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Holman, K. T., Steed, J. W. \& Atwood, J. L. (1997). Angew. Chem. Int. Ed. Engl. 36, 1736-1738.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Piorko, A. \& Sutherland, R. G. (1997). Synthetic Methods of Organometallic and Inorganic Chemistry, edited by W. A. Herrmann, Vol. 8, pp. 21-22. New York: Georg Thieme Verlag.
Stoe \& Cie (2001). X-AREA, X-SHAPE, X-STEP32 and X-RED. Stoe \& Cie, Darmstadt, Germany.

